

37

AGENTS-BASED COMMODITY MARKET SIMULATION WITH JADE

Rina Refianti, Achmad Benny Mutiara, and Hendra Gunawan

Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma

Jl. Margonda Raya No.100, Depok, 16424

E-mail: rina@staff.gunadarma.ac.id

Abstract

A market of potato commodity for industry scale usage is engaging several types of actors.

They are farmers, middlemen, and industries. A multi-agent system has been built to

simulate these actors into agent entities, based on manually given parameters within a

simulation scenario file. Each type of agents has its own fuzzy logic representing actual

actors' knowledge, to be used to interpreting values and take appropriated decision of it

while on simulation. The system will simulate market activities with programmed

behaviors then produce the results as spreadsheet and chart graph files. These results

consist of each agent's yearly finance and commodity data. The system will also predict

each of next value from these outputs.

Keywords: Agent, JADE, Java, fuzzy logic, Potato

Abstrak

Sebuah pasar komoditas kentang untuk penggunaan skala industri melibatkan beberapa

jenis aktor. Mereka adalah petani, tengkulak, dan industri. Sebuah sistem multi-agent telah

dibangun untuk mensimulasikan aktor ini menjadi entitas agen, berdasarkan parameter

yang diberikan secara manual dalam file skenario simulasi. Setiap jenis agen memiliki

logika fuzzy sendiri mewakili pengetahuan pelaku yang sebenarnya, yang akan digunakan

untuk menafsirkan nilai-nilai dan mengambil keputusan yang disesuaikan pada saat

simulasi. Sistem akan mensimulasikan kegiatan pasar dengan perilaku yang terprogram

kemudian menampilkan hasil dalm bentuk spreadsheet dan file grafik chart. Hasil ini

terdiri dari data tahunan keuangan dan komoditas masing-masing agen. Sistem ini juga

akan memprediksi setiap nilai berikutnya dari keluaran tersebut.

Kata kunci: Agent, JADE, Java, fuzzy logic, kentang

1. Introduction

 In potato commodity market, industries and

farmers, as end buyer and raw producer

respectively, hold big role in market activities that

can give impact to each other. Industries need the

farmers to fulfill their raw commodity

requirement for continuous production. For

industries, their production is vital activities to

gain profit. At other side, farmers need to keep

producing and sell their harvest revenue to have

income. However, both farmers and industries are

not the only one “seller” and “buyer” in market.

Middlemen hold those both two roles, positioning

themselves a competitor to farmers and industries

and gain profit from it.

 In market competition, each actor's assets,

knowledge, and behaviors can be different to

others thus giving different measures on the same

situation. A simulation system will help by

simulating the market activities and the produce

the data to see if their current conditions can give

positive impact in achieving their goal.

 Agent Oriented Programming (AOP) is one

of the best approaches to declare actual actors as

system entities, called agent, and simulate their

actions [5]. AOP offers several advantages like

message based communication, multi-behaviors

support, life cycle management, and more [2].

The capability of agents can be improved by

posing artificial intelligent backup to help them

sense conditions of environment where they live

and take appropriated actions regarding to it. Thus

this type of agents are called intelligent agent [1].

Users have to supply actors' knowledge and

scenario to the system. The system will be limited

to give output data as it is, without any

conclusion.

38 Journal of Information Systems, Volume 9, Issue 1, April 2013

2. Methodology

 The methodology that is used consists four

phases in order [2]. Each phase has multiple steps

inside them to be done in order too. The flow,

phases, and steps of the methodology are

illustrated in Fig 1.

Fig 1. Methodology diagram [2].

 This methodology is used corresponding to

JADE (Java Agent Development) library which is

used to built system's architecture. JADE is Java

based library with ACL (Agent Communication

Language) that is defined by FIPA (Foundation

for Intelligent Physical Agent) [8]. In general, this

ACL declares the messages per formative and

service type “yellow paging” as basic way for

agents to communicate.

 The methodology serves as a guide for the

system designer when developing a system. In

general, a software development methodology

may comprise of [2,3,4,6]:

1. A process, i.e. a sequence of phases and

steps that guide the developer in building the

system.

2. A set of heuristic rules that support the

developer in making relevant choices.

3. A number of artifacts, i.e. diagrams, schemas

or documents representing in graphical or

textual form one or more models of the

system.

4. A suitable notation to be used in the artifacts.

5. A set of patterns that can be applied to solve

common situations.

6. One or more tools that: automate, as much as

possible, the phases and step specified in the

process; force consistency between the

models produced; highlight problems arising

from incorrect design choices, when

possible; generate code and documentation,

etc.

 The focus of the methodology is on the

process and the artifacts that are produced. The

described process covers the analysis phase and

the design phase and is shown in Fig.1. The

analysis phase is general in nature and

independent of the adopted platform. Conversely,

the design phase specifically assumes JADE as

the implementation platform and focuses directly

on the classes and concepts provided by JADE.

Observing Fig.1, it can be seen that there is no

strict boundary between the analysis and design

phases. Moreover, the methodology is of an

iterative nature, thus allowing the designer to

move back and forth between the analysis and

design phases and the steps therein.

 At the end of the design phase, the developer

should be able to progress straight to the

implementation, which is where the actual coding

occurs. In addition, most of this phase can

probably be carried out by means of a proper tool

which automates the implementation process. The

planning stage, like implementation and testing, is

not formally addressed in the methodology.

However, for the sake of the methodology, a

question is included (see Fig.1), which initially

asks if the designer has made a rational decision

on whether to use an agent-based solution. If the

answer is yes, the designer moves on the analysis,

while if the answer is no, the designer should seek

an alternative solution.

3. Results and Discussion

3.1. Planning Phase

 The system uses intelligent agent and Fuzzy

logic is chosen as knowledge implementation

since the actual actors may interpret some values

into natural language. The fuzzy rules are written

Rina Refianti et. al., Agent-based Commodity Market 39

as FCL (Fuzzy Control Language) script and

applied with help of jFuzzyLogic library and its

built-in fuzzy inference system. The required

input is simulation scenario describing some

parameters including FCL scripts' location in form

of spreadsheet file. At start, system will ask user

to select this file in order to run. Finally, each

agent will produce their finance and commodity

data at the end of simulation, both in form of

spreadsheet files (tabular) and picture files

(charts) by using jExcel and jFreeChart libraries.

3.2. Analysis Phase

 The following Use case diagrams (Fig 2 – 4.)

are showing relation between farmer-middlemen,

farmer-industries, and middlemen-industries

respectively.

 Actual actors are represented by three kind

of agents based on service they provide. Farmers,

middlemen, and industries are “ProdusenAgent”,

“DistributorAgent”, and “KonsumenAgent”

agents respectively. Since the system needs to

access the external resource scenario and FCL

files, a transducer agent that not representing

actual actors “MainAgent” is created. Fig. 5

shows relation between these agents kind. Agent’s

task can be seen in the Table I.

Fig 2. Use Case Diagram between Farmers and Middlemen

Fig 3. Use Case Diagram between Farmers and Industries

Fig 4. Use Case Diagram between Middlemen and Industries

TABLE I

TASKS OF AGENTS

Agent Type Tasks

ProdusenAgent Plant seed to field

Harvest

Respond to commodity request

Respond to pledge deal

Offer own commodity

Search highest price for commodity

Give harvest revenue to pledge dealer

DistributorAgent Sort commodity according to its
standard

Respond to commodity offers

Respond to price request

Respond to commodity giving

Respond to commodity request

Offer own commodity

KonsumenAgent Perform monthly production

Sort commodity according to its
standard

Respond to commodity offers

Respond to price request

Respond to commodity giving

Make pledge deal with

ProdusenAgent

Request for commodity

MainAgent Load scenario file

Parse scenario's parameters

Do the dating count

Synchronize date to all active agents

3.3. Design Phase

 This phase offers chance to improve agents

relation and interaction protocol in case FIPA

doesn't cover the need. After specify agents

relation, a interaction specification table including

messages template is made as shown in Table II.

All capitalized word refers to messages per

formative.

40 Journal of Information Systems, Volume 9, Issue 1, April 2013

Fig 5. Agents relation

To interact with user, the system has its own

graphical user interface (GUI) showing finance

and commodity charts. The GUI also shows some

agent's actions log for debugging case and agent's

current status as described in stock, money, and

field values. User gives the scenario input through

“MainAgent”. The scenario file has two sections

of parameters. The first section as described on

Table III is used to determine how the simulation

will work globally. A scenario file only has one of

these sections.

 The second section is used to give

parameters to agent. This section can appear

multiple times in one scenario file. The number of

this section must be specified at the start of

scenario, in other words first global parameter.

The section is described in Table IV.

 Each agent has some instance of JADE's

Behavior class to describe an action of actual

actor into algorithm. These behaviors can be

executed in parallel or sequence depends on the

need. The lists of behaviors representing actual

actors’ actions are mentioned by Table V.

Beside those behaviors, there are some which

aren't representing actual actors' actions. These

behaviors are related to agents' activities like

calculate date and pool received message. They

are listed in Table VI.

For ontology, the system will use object

serialization as its protocol. To do this, some

classes which will be content language like Price,

Offer, and Seed have to implement Serializable

interface. Instance of these classes will be set to

ACLMessage before sent. ACLMessage itself is

JADE's class that support performative and object

use as content rather plain string.

TABLE II

INTERACTION SPECIFICATION TABLE

Agent Inter-

action

IP Role With When Tem-

plate

Produ

sen-

Agent

Respo

nd to

comm
odity

reques

t

Offer R D, K Get

REQU

EST
messag

e

QUERY

_IF

Respo

nd to

pledge
deal

Seed R K Get

PROPO

SE
messag

e

ACCEP

T_PROP

OSAL,
REJECT

_PROPO

SAL

Offer

own
comm

odity

Offer I D, K Every

month
change

and has

stock

INFOR

M,
INFOR

M_IF,

AGREE,
REFUSE

Search

highes
t price

for
comm

odity

Pledge I D, K Harvest

time

CFP

Give
harves

t

revenu
e to

pledge

dealer

Pledge I D, K Deal on
given

price

CONFIR
M

Distri-

butor-

Agent

Respo

nd to

comm

odity

offers

Offer R P Get

INFOR

M

messag

e

INFOR

M_IF

Respo

nd to

price
reques

t

Pledge R P Get

CFP

messag
e

REQUE

ST_WH

EN

Respo
nd to

comm

odity
giving

Pledge R P Get
CONFI

RM

messag
e

DISCON
FIRM

Respo
nd to

comm

odity
reques

t

Offer R K Get
REQU

EST

messag
e

QUERY
_IF

Offer

own

comm
odity

Offer I K Every

month

change
and has

stock

INFOR

M,

INFOR
M_IF,

AGREE,

REFUSE

Rina Refianti et. al., Agent-based Commodity Market 41

TABLE II

INTERACTION SPECIFICATION TABLE (CON’T)

Agent Inter-

action

IP Role With When Tem-

plate

Konsu

menAg

ent

Respo

nd to

comm
odity

offer

Offer R P, D Get

INFOR

M
messag

e

INFOR

M_IF

Respo
nd to

price

reques
t

Pledge R P Get
CFP

messag

e

REQUE
ST_WH

EN

Respo
nd to

comm

odity
giving

Pledge R P Get
CONFI

RM

messag
e

DISCON
FIRM

Make

pledge
deal

with

Produ
senAg

ent

Seed I P Every

month

PROPO

SE,
AGREE,

REFUSE

Reque

st for

comm
odity

Offer I P, D Every

month

when
stock

isn't

enough
to

perform

product
ion

REQUE

ST,

AGREE,
REFUSE

Main-

Agent

Synchr

onize

date to

all

active
agents

Detail

edYea

r

I P, D,

K

Every

month

SUBSC

RIBE

TABLE III
GLOBAL PARAMETERS

Title Description

Specification block counts Number of how many
specification blocks that

need to load

Start year Year of start

Simulation duration (year) How long the simulation

Harvest ratio (Revenue/seed) Number of harvest revenue
(Kg) produced by 1 Kg seed

Kg seed per Ha Number of seed (Kg)
planted in 1 Ha field

Autonom (boolean) Specify whether simulation
will run automatically (1) or

manually (0)

TABLE IV

 AGENTS PARAMETERS

Name Description

GUI Specify whether agent(s) has

GUI (1) or not (0)

Name Name for agent(s)

Role Service type of agent(s):

“produsen” (0), “distributor” (2),

“konsumen” (3)

Stock at start (kg) Number of stock at start

Money at start (Rp) Number of money at start

Seed at start (Kg) Number of seed at start

Minimum diameter (cm) Lower value of diameter to pass

selection

Maximum diameter (cm) Upper value of diameter to pass

selection

Production usage (kg) Number of commodity needed to

perform one time production

Production income (Rp/kg) Price for 1 Kg of processed

commodity

Market income (Rp/kg) Price for 1 Kg of commodity

when sold in traditional market

Normal buy price (Rp/Kg) Starting price when buying

Normal pledge price (Rp/Kg) Starting price when pledging

Harvest failure chance (%) Probability for harvest revenue

number to randomly goes down

Field (Ha) Owned field

Plant cost (Rp/Ha) Cost to plant in 1 Ha field

FCL path File path relatively to system's

location for FCL script

Number of agents Number of agent(s) using this

specification

TABLE V
AGENT’S ACTOR REPRESENTING BEHAVIORS

Behavior's

Name

Represented Action Type of agent

InformingBev Offer own commodity ProdusenAgent,

DistributorAgent

InformedBev Respond to commodity
offer

DistributorAgent,
KonsumenAgent

QueryingBev Request for commodity KonsumenAgent

QueriedBev Respond to commodity

request

ProdusenAgent,

DistributorAgent

SellBev Offer own commodity

to respond request

ProdusenAgent,

DistributorAgent

PledgingBev Make pledge deal KonsumenAgent

PledgedBev Respond to pledge deal ProdusenAgent

GivingBev Give commodity ProdusenAgent

GivedBev Respond to commodity

giving

DistributorAgent,

KonsumenAgent

DivergingBev Search highest price ProdusenAgent

DivergedBev Respond to price request DistributorAgent,
KonsumenAgent

42 Journal of Information Systems, Volume 9, Issue 1, April 2013

TABLE VI.

AGENT’S SYSTEM RELATED BEHAVIORS

Behavior's

Name

Purpose Type of agent

CyclicBehavior Used to pool received

message and check its

performative then call
appropriate behavior to

handle it.

ProdusenAgent,

DistributorAgent,

KonsumenAgent

DelayBehavior Used to update date by
increasing month count

after some time. It'll be

done as long as
simulation running.

MainAgent

3.4. Implementation and Testing Phase

 A test is performed by using a dummy

scenario and three kinds of knowledge bases, one

for each type of agents. The scenario specifies six

block specification for six agents (one block per

agent) and put them in group of two. Therefore

each type of agents has two agents instance and

shares same knowledge base. The complete list of

scenario can be seen in Table VII. This table uses

scenario's dummy values for test (following [7]).

Note that this table doesn't represent how to write

them on the actual scenario file because there's

difference in format. In order to optimize, several

operation parameters for Java Virtual Machine

(JVM) and JADE class loader are given as listed

in Table VIII.

TABLE VII

 COMPLETE LIST OF SCENARIO’S DUMMY

Parameters Values

Specification block counts 6

Start year 2002

Simulation duration (year) 8

Harvest ratio (Revenue/seed) 2

Kg seed per Ha 1000

Autonom (boolean) 1

Group Produsen

GUI 1 1

Name P1 P2

Role 0 0

Stock at start (kg) 10 5

Money at start (Rp) 35000 100000

Seed at start (Kg) 20 34

Minimum diameter (cm) 0 0

Maximum diameter (cm) 0 0

Production usage (kg) 0 0

Production income (Rp/kg) 0 0

Market income (Rp/kg) 1000 1600

Normal buy price (Rp/Kg) 5300 5100

Normal pledge price (Rp/Kg) 0 0

Harvest failure chance (%) 0.45 0.57

Field (Ha) 2.3 5.3

Plant cost (Rp/Ha) 50000 56400

FCL path script/produsen.fcl

Number of agents 1 1

Group Distributor

GUI 1 1

Name D3 D4

Role 1 1

Stock at start (kg) 12 3

Money at start (Rp) 250000 37600

Seed at start (Kg) 0 0

Minimum diameter (cm) 4.9 3.9

Maximum diameter (cm) 6.3 5.7

Production usage (kg) 0 0

Production income (Rp/kg) 0 0

Market income (Rp/kg) 1200 1200

Normal buy price (Rp/Kg) 5700 5500

Normal pledge price (Rp/Kg) 0 0

Harvest failure chance (%) 0 0

Field (Ha) 0 0

Plant cost (Rp/Ha) 0 0

FCL path script/distributor.fcl

Number of agents 1 1

Group Konsumen

GUI 1 1

Name K5 K6

Role 2 2

Stock at start (kg) 500 830

Money at start (Rp) 400000 100000

Seed at start (Kg) 80 220

Minimum diameter (cm) 5.1 6.5

Maximum diameter (cm) 6 8.79

Production usage (kg) 150 125

Production income (Rp/kg) 3000 4100

Market income (Rp/kg) 1500 900

Normal buy price (Rp/Kg) 6000 6400

Normal pledge price (Rp/Kg) 6200 7500

Harvest failure chance (%) 0 0

Field (Ha) 0 0

Plant cost (Rp/Ha) 0 0

FCL path script/konsumen.fcl

Number of agents 1 1

Rina Refianti et. al., Agent-based Commodity Market 43

The results of simulation for two agents of

“ProdusenAgent” are shown in figures 6 – 11.

Fig.6 shows complete GUI of the agents and

commodity charts at same time. The finance

charts hidden inside the scroll area can be seen in

Fig.7.

The results of simulation for two agents of

“DistributorAgent” are shown both in commodity

(Fig. 8) and in finance (Fig. 9) charts too. Finally,

the output of “KonsumenAgent” agents are shown

by Fig.10 and Fig.11.

TABLE VIII.

 OPERATION PARAMETERS

Parameter Description

-Xms512m Allocate 512MB of RAM
to JVM

-Xmx1024m Allocate maximal

1024MB of RAM to JVM
for additional usage

jade_core_messaging_Message
Manager_maxqueuesize

50000000

Tell JADE to allocate
50MB of RAM as

message queue

Fig 6. Commodity charts of “ProdusenAgent” agents

Fig 7. Finance charts of “ProdusenAgent” agents

For additional test, the system is also strained

by simulating some numbers of agents instances

(Table IX), including previous dummy test as test

no. I. This is conducted to see how well the

system's performance is. Table X shows

specification of the testing machine where all test

performed. Memory and processor (CPU) usages

that are used during the test are listed by Table XI.

Fig 8. Commodity charts of “DistributorAgent” agents

Fig 9. Finance charts of “DistributorAgent” agents

Fig 10. Commodity charts of “KonsumenAgent” agents

44 Journal of Information Systems, Volume 9, Issue 1, April 2013

Fig 11. Finance charts of “KonsumenAgent” agents

TABLE IX.

NUMBER OF AGENT’S INSTANCES FOR STRAIN TEST

Test
No.

Number of
“Produsen-

Agent”

instance

Number of
“Distributor-

Agent”

instance

Number of
“Konsumen-

Agent”

instance

Total

I 2 2 2 6

II 7 7 7 21

III 12 12 12 36

IV 17 17 17 51

V 22 22 22 66

TABLE X.

TESTING MACHINE

Parameter Description

Operating System Windows 7 Ultimate 32 bit

CPU AMD E-450 2 CPU @1.6GHz

RAM 2048MB, 384MB Shared

Storage ST950032 SATA

JDK/JRE version Java 6 update 29

TABLE XI.

STRAIN TEST RESULTS

Test

No.

Memory usage
CPU

usage
Duration

Min (Byte) Max (Byte)

I 21.635.680 156.129.920 24,90% 5 m 46 s

II 19.316.896 159.294.232 98,30% 5 m 59 s

III 17.112.774 164.188.432 100,00% 5 m59 s

IV 24.967.448 591.403.360 100,00% 6 m 44 s

V 49.914.848 1.360.807.024 100,00% 19 m 54 s

4. Conclusions

 The built system can run simulation based

on given scenario then produce output each

agent's yearly finance and commodity data in

form of spreadsheet and chart graph files. The

system is also able to add additional value for

spreadsheet files as prediction. The output is

limited to raw data without any further analysis or

conclusions, which are expected to come from

appropriate market experts. Inheriting advantage

of agent based application, system extension

efforts like adding new agents or new behaviors is

possible. For further research, some steps can be

taken like implementing self adapting logic,

performance optimization, and improvement for

better quality of results.

References

[1] F. Bellifemine, G. Cair, and D. Greenwood.,

Developing multi-agent systems with JADE,

John Wiley and Sons, Ltd, West Sussex,

England, 2007.

[2] M. Nikraz, G. Caire, P. A. Bahri, A

methodology for the Analysis and Design of

Multi-Agent Systems using JADE, Telecom

Italia Lab, Via Reiss Romoli, Turin, Italy

10148.

[3] F. Bellifemine, G. Caire, A. Poggi, and G.

Rimassa, JADE: A software framework for

developing multi-agent applications. Lessons

learned, Information and Software

Technology 50, 10-21 (2008).

[4] F. Bellifemine, A. Poggi, G. Rimassa,

Developing multi agent systems with a FIPA-

compliant agent framework, In Software -

Practice & Experience 31, 103–128 (2001).

[5] L.S. Sterling and K. Taveter, The Art of

Agent-Oriented Modeling, MIT Press,

Cambridge, Massachusetts, 2009

[6] M. Luck, R. Ashri, and M. D’Inverno, Agent-

Based Software Development, Artech House

Publishers, 2004.

[7] A.M. Noor, Designing Behavior Model of

Agents on Potetoes Supply Chain System,

PhD-Thesis, Bogor Agricultural University,

2013.

[8] Foundation for Intelligent Physical Agents

(FIPA), see: http://www.fipa.org/.

