
82

ANALYSIS OF QUALITY ASSURANCE ON SISTEM INFORMASI ZAKAT (SIZAKAT)
THROUGH SOFTWARE TESTING

Abdul Haris, Wisnu Jatmiko, and Ari Wibisono

Fakultas Ilmu Komputer, Universitas Indonesia, Kampus Baru UI Depok, Jawa Barat, 16424, Indonesia

E-mail: abdul.haris91@ui.ac.id

Abstract

Sistem Informasi Zakat (SIZakat) is a web-based information system that is used to assist in the
management of zakat in Imam Bonjol Mosque Pondok Labu, South Jakarta. In this thesis, we conducted
testing to the SIZakat application to know the quality and the feasibility. We conducted seven kinds of
testing: Unit Testing, Integration Testing, Stress Testing, Load Testing, Testing SQL Injection, XSS
Injection Testing and User Acceptance Testing. In addition to ensure the quality of SIZakat, the SIZakat
test result is expected to be a reference for future quality improvement. Test results show that SIZakat
have accurate functionalities, good security, and good performance.

Keywords: SIZakat, Unit Testing, Integration Testing, Stress Testing, Load Testing

Abstrak

Sistem Informasi Zakat (SIZakat) merupakan sistem informasi berbasis web yang digunakan untuk
membantu proses pengelolaan zakat di Masjid Imam Bonjol Pondok Labu Jakarta Selatan. Pada tugas
akhir ini, kami melakukan pengujian (testing) terhadap aplikasi SIZakat untuk mengetahui kualitas dan
kelayakan. Kami melakukan tujuh macam pengujian yaitu Unit Testing, Integration Testing, Stress
Testing, Load Testing, SQL Injection Testing, XSS Injection Testing, dan User Acceptance Testing.
Selain untuk menjamin kualitas SIZakat, diharapkan hasil pengujian SIZakat menjadi acuan untuk
perbaikan mutu kedepannya. Hasil pengujian menunjukkan SIZakat memiliki fungsional yang akurat,
keamanan yang baik, dan performance yang bagus.

Kata Kunci:SIZakat, Unit Testing, Integration Testing, Stress Testing, Load Testing

1. Introduction

The rapid development of information technology
influences on the growing needs for software that
can support organization's business processes.The
more demand on the software to support the busi-
ness processes, the more software is developed to
help it.This makes so many variety and choices of
software that can be used to complete the job. The-
refore, in the process of making and designing soft-
ware, developers must consider the needs and qua-
lity of the software being developed.
 Sistem Informasi Zakat (SIZakat) is an appli-
cation used to assist the process of management of
zakat in Imam Bonjol Mosque, Pondok Labu, Sou-
th Jakarta. The classic issues that also experienced
by other mosques occur when approaching the day
of Eid. A joyful moment for every muslim people
around Imam Bonjol Mosque become a polemic
issue itself because zakat. The renowned Imam
Bonjol Mosque, as one of the great mosque has
becomethe trust of the muzakki (person who pays
zakat) in the neighborhood of Pondok Labu subdis-
trict. In terms of zakat, management inImam Bon-

jol Mosque is better than most of the mosques,
while there are many other mosques using conven-
tional methods such as recording through the books
one after anotherzakat transactions, then recapita-
lize and record them manually later.
 This method is very vulnerable and the possi-
bility of mistakes is very high.It always happens
every year and until now still have not found the
effective solution. Would be a pity that the method
continues to be used when the risk is always repeat-
ed every year. Especially Mosque Imam Bonjol it-
self always increase the amount of zakat almost
every year. Through this program mosques and Za-
kat Distribution Units (UPZ) is expected to be able
to manage the distribution of zakat transparently
and accountably.
 One of the major problems in the manage-
ment of zakat in Imam Bonjol Mosque was also
associated with the habits of the people around
Imam Bonjol Mosque who often paid zakat when
approaching D-day. At its peak, the number of za-
kat transactions increased rapidly. This is a pro-
blem because the distribution of zakat must be
completed before the preacher climbing up the pul-

Haris, et al. Analysis of Quality Assurance 83

pit during the Eid prayer, otherwise it would not be
counted as ‘zakat’instead as an ordinary ‘charity’.
Whereas most people paid zakat at night the day
before. SIZakat will accommodate the needs of
amilin (the zakat manager) to predict the amount of
zakat al-Fitr should be issued by amilinfor this year
based on the data in the previous year. Therefore,
there needs to be a quality assurance of SIZakat in
terms of performance, accuracy, and security.
 Based on the estimated number of zakat trans-
actions mentioned above, SIZakat should have go-
od performance to serve requests from many users,
a good security because reports of zakat are impor-
tant documents that should be kept confidential in
order to avoid errors in the input and calculation of
zakat, and the functional accuracy of SIZakat also
needs to be ascertained because the functions in
SIZakat closely related to the distribution of re-
ports.
 Every software that will be released to the pu-
blic need to go through a process of quality assu-
rance or often called the Software Quality Assuran-
ce (SQA). SQA needs to be done to determine the
quality and feasibility of the software. The process
is necessary to minimize losses due to the low qua-
lity software. Nowadays, both desktop application
and web application are needed to support business
processes. Before it was released to the public, an
application passed several stages in the process of
software quality assurance where the purpose of
this process can be seen from different viewpoints.
 One important perspective is how to ensure
and maintain the quality of the application and con-
vince consumers that the application can be accept-
ed in society.

2. Methodology

This paper discusses SIZakat’s quality case study
that will be used as a support in the management of
zakat in Imam Bonjol Mosque. As the title sug-
gests, we will conduct software testing to measure
SIZakat’s quality. Speaking of software testing,
there must be association with software develop-
ment model.Hambling, Morgan and Samaroo [1]
stated there are 3 (three) models that commonly
used in software development, they are waterfall
model, V-Model, and Iterative Development. In V-
Model, testing an application starting from unit tes-
ting, integration testing, system testing, and then
acceptance testing as the final test (Figure 1). The
scope of this study is to perform 7 (seven) different
types of tests to determine the quality of SIZakat.
The seven tests are Unit Testing, Integration Tes-
ting, Stress Testing, Load Testing, SQL Injection
Testing, XSS Injection Testing and User Accep-
tance Testing.

Unit Testing

According to the Laudons [2], unit testing involves
testing each program or code separately in the sys-
tem. Shrivastava and Jain [3] say that program tes-
ting is another name for unit testing. This test is
intended to ensure that the written code for a unit
already meets the specifications, before integrated
with other units [1]. According to Seixas, Fonseca,
Vieira, and Madeira [4], a good writing and struc-
ture of code will also improve a web security. We
usedSimpleTest, a unit testing framework that is
open source and can be used to test the PHP pro-
gramming language (Baker) and also compatible
with CodeIgniter framework.SimpleTest can test
whether the written code in SIZakat units can run
in accordance with the specifications. With Simple-
Test, we can create a test case for each class to be
tested.

Integration Testing

Integrationtesting is performed to determine whe-
ther the collection of classes that must work toge-
ther can run without error. The purpose of integra-
tion testing is to find damage to the interaction
interfaces between components or integrated sys-
tems. Thus, the basis of test on integration testing
may include: system and software design; diagram

of the system architecture, workflow, and use-case.
Testing can be done starting from the smallest or
largest unit [5]. SeleniumIDEis selected to perform
integration testing as this tool is portable, provides
tool record, and playback for authoring test without
learning new scripting test language [6]. Test cases
that have been created are stored into many file
types such as HTML, Perl, PHP, JUnit, Ruby, and
others.

Stress Testing

According to Kunhua Zhu, Junhui Fu, and Yancui
Li [7], stress test was done by gradually increasing

Figure 1. V-Model

84 Journal of Information Systems, Volume 9, Issue 2, October 2013

the load of the system to test the changing perfor-
mance of the system. Stress test examines whether
the state of hardware and software system environ-
ment can withstand the maximum load and to help
identify the bottleneck in the system. In this test,
we used the standard testing tools used for Apache
Web Server that is Apachebench (ab). This tool-
prints output which is very useful to determine so-
me performance aspects of web server.

Load Testing

According to Subraya [8], load testing is used to
determine whether the system being tested is able
to handle anticipated activities carried out simulta-
neously by different users. To simulate such things
in real events, we used a tool called Gatling Tools.
Gatling is a testing tool that runs on top of Java Vir-
tual Machine (JVM) using the Scala simulation
script that can measure performance of client/ser-
ver applications. By default, Gatling can be used to
measure performance of HTTP protocol only (web
application). However, users can add their desired
protocol support to Gatling by themselves [9].

SQL & XSS Injection Testing

SQL and XSS Injection Testing aims to test the da-
tabase security and XSS attacks (Cross-Site Scrip-
ting) in SIZakat respectively. SQL Injection ranks
first in the 10 list of web application weaknesses
issued by the Open Web Application Security Pro-
ject (OWASP) as stated by several researchers [10-
11]. To facilitate the inspection and detection of
SQL Injection found in the database, weused a tool
called SQL Mapper (sqlmap). This tool is develop-
ed using Python which does not rely on the opera-
ting system being used and easy to operate. We
usedsqlmap because it can be used for all types of
databases, operating systems and can be used to get
the database name, table name even get important
contents of a table from an application accurately.
XSS Injection ranks second after SQL Injection in
the top 10 list of web applicationweaknesses issued
by OWASP [11]. To detect the presence of a loop-
hole for XSS attacks, we used a tool called XSS-
Me, a plugin for the Mozilla Firefox browser. For
the moment, XSS-Me can only test reflected XSS
and does not include with stored XSS [12]. Al-
though such attack is quite dangerous, this test is
enough to protect applications from XSS attacks.
We used XSS-Me because it has enough features
and is very easy to use.

Acceptance Testing

Acceptance testing gives the final certification that
the system is ready for use on production levels [2].

According to Hambling, Morgan, and Samaroo [1],
the purpose of acceptance testing is to provide us-
ers with confidence that the system will function-
ing in accordance with their expectations. Accep-
tance testing was done by evaluating the system by
the users and stakeholders, and if all parties are sa-
isfied when the system has met their standards, the
system is formally accepted for installation.

3. Results and Analysis

Unit Testing

The test is performed on localhost which is located
in author’s computer. In this test, we examine a unit
or a class or a method that exists in models. Models
are PHP classes that are designed to work with the
database [13]. The unitsare in models because SI-
Zakat was developed using CodeIgniter.
 To ensure each method issuing the correct
output, we look at the use of the method on the con-
troller. We look at what input is needed and the re-

TABLE 1
UNIT TESTING RESULTS 1

Model class
name

Method Name Result

mustahik_mo
del

getAll() PASS
count_mustahik() PASS
get_mustahik_page() PASS
add_mustahik() PASS
update_mustahik() PASS
delete_mustahik() PASS
get_mustahik_by_id() PASS
search_mustahik() PASS
get_userid_by_name() PASS
get_photo_by_id() PASS

muzakki_mod
el

getAll() PASS
count_muzakki() PASS
get_muzakki_page() PASS
add_muzakki() PASS
add_muzakki_inTransaction() PASS
add_compact_muzakki() PASS
update_muzakki() PASS
delete_mustahik() PASS
get_muzakki_by_id() PASS
get_userid_by_name() PASS
get_userid_by_username() PASS
get_photo_by_id() PASS

periode_mode
l

getAll() PASS
get_periode_by_id() PASS
get_periode_by_year() PASS
get_periode_by_status() PASS
count_periode() PASS
get_periode_page() PASS
add_periode() PASS
update_status_periode() PASS
process_update_periode() PASS

prediction_m
odel

getAll() PASS
getAllYear() PASS
getLastYear() PASS
getAllSum() PASS
getAllSumMuzakki() PASS

Haris, et al. Analysis of Quality Assurance 85

sult generated from the method. In the controller,
we can also find out what methods are used and
what not. It helps in saving time because we can
test those methods that are used in SIZakat. After
finding out the needed input for the method, we
then make a statement to compare the method’s
output with the expected result. Suppose to exa-
mine a method to calculate the user, then the ex-
pected result with the output of the method is same,
which is a number. Not only of its type, but also the
amount has to be the same.

TABLE 2
UNIT TESTING RESULTS 2

Model
class name

Method Name Resul
t

report_mod
el

getAll() PASS
get_transaction_page() PASS
countTransc() PASS
get_zakat_muzakki_id_by_date() PASS
get_transaction_by_zakat_type_an
d_date2()

PASS

get_transaction_pertanggal2() PASS
insert_batch_report_model() PASS
get_batch_report_model() PASS
get_batch_report_model_by_year(
)

PASS

user_model count_user() PASS
countUserRole() PASS
get_user_page() PASS
get_all_users() PASS
update_user() PASS
delete_user() PASS
delete_user_by_username() PASS
add_user() PASS
get_user() PASS
get_name_by_id() PASS
get_user_by_id() PASS
get_role_user() PASS
get_photo_by_id() PASS

zakat_quali
ty_model

getAll() PASS
get_zakat_quality_by_zakatType() PASS
get_zakat_quality_desc_by_keys() PASS
get_zakat_quality_by_id() PASS
get_ztID_by_zqID() PASS
count_zakat_quality() PASS
get_latest_id() PASS
add_zakat_quality() PASS
process_update_zakat_quality() PASS
delete_zakat_quality() PASS
countZakatTranscbyType() PASS

zakat_type
_model

getAll() PASS
get_zakat_type_description_by_ke
y()

PASS

count_zakat_type() PASS
get_zakat_type_page() PASS

dist_zakat_
mustahik

getAllDistZakatMustahikTraining(
)

PASS

getAllDistZakatMustahikPredict() PASS
insertIfNewPeriod() PASS
update_distribution_zakat() PASS
live_update_distribution_zakat() PASS
getDataMustahikWithZakatDist() PASS
getRiwayatZakatMustahik() PASS
delete_mustahik_distribution() PASS

 In Table 1 and 2, listed all model classes used
in SIZakat.There are also methods on every model
class that has successfully passed the unit testing.
It can be seen from the Result column that says the
success of a method. If the method has passed with-
in expectations that have been determined, then the
Result of the method is PASS otherwise the Result
is FAIL meaning the results of the method do not
have the same type or different amounts.

Integration Testing

TABLE 3
INTEGRATION TESTING RESULTS 1

Menu Feature
Test Results

Log
User User Data Management

 Viewing User Details

 Adding User Data

 Changing User Data

 Deleting User Data

 Muzakki Data Manage-

ment

Muzakki Viewing Muzakki Details

 Adding Muzakki Data

 Changing Muzakki Data

 Deleting Muzakki Data

Mustahik Mustahik Data Manage-

ment

 Viewing Mustahik Details

 Adding Mustahik Data

 Changing Mustahik Data

 Deleting Mustahik Data

Zakat
Quality

Zakat Quality Manage-
ment

 Viewing Zakat Quality

Details

 Adding Zakat Quality Da-ta

 Changing Zakat Quality

Data

 Deleting Zakat Quality Data

86 Journal of Information Systems, Volume 9, Issue 2, October 2013

The test was conducted on SIZakat running on the
Faculty of Computer Science UI (Fasilkom)server
with address at http://ws-73.rsa.cs.ui.ac.id/sizakat.
In this test, we logged-in to system using all roles
then run all existing use-cases to determine whe-
ther the function is going well and according to the
scenario. In addition, it is necessary to see whether
the function is also showing the expectedinterface.
We used Selenium IDE 2.0.0 and Mozilla Firefox
browser to perform this test. The list of use-cases
that have been tested can be seen in Table 3 and 4.
 A green bar expresses that the testing goes
well from beginning to end, whereas a red bar ex-
presses that an error has occurred in the test. In
Table 3 and 4, it can be seen that all existing use-
cases have passed the test which are marked with
green bars.

TABLE 4
INTEGRATION TESTING RESULTS 2

Menu Feature
Test Results

Log
Report Creating Customized Re-

port

 Creating Batch Report

Prediction Viewing Zakat Prediction

Report

 Viewing Muzakki Predic-
tion Report

Transaction Zakat Transaction Data

Management

 Viewing Transaction De-
tails

 Changing Zakat Transac-

tion

 Removing Zakat Trans-
action

 Adding Zakat Transacti-

ons

 Muzakki Transaction Da-
ta Management

 Viewing Transaction Hi-

story

Period Period Management

 Adding Period

 Changing Period

General
Functions

Login

 Logout

Stress Testing

In the analysis of this test, we consider four para-
meters to form the basis to determine web perfor-
mance. The four parameters are complete requests,
failed requests, requests per second, and transfer
rate. Out of the four parameters, the complete requ-
ests and failed requests parameters are intercon-
nected. The complete requests value is the amount
of overall requests reduced by the number of failed
requests, and vice versa.
 The common notations used for testing is -n
(number of requests or the number of users) and -
c (number of concurrent users) [14]. The -c nota-
tion is used to perform stress testing, a test aimed
to determine performance of the application when
accessed simultaneously. For example, we want to
test anapplication with address at http://ws-
73.rsa.cs.ui.ac.id. We would like to know perfor-
mance of the application when it accessed by 100
people and 10 of them simultaneously accessed it.
So the used notation is “ab -n 100 –c 10

http://ws-73.rsa.cs.ui.ac.id”. This test
will generate some important parameters that show
information from the test performed. Example out-
puts generated from this trial are: the number of
complete requests is 100, the number of failed re-
quests is 0, the number of requests per second is
57.87, and the number of the transfer rate is 303.41.
From these examples, the number of complete re-
quests equals to the number of users were tested
which is 100.
 To determine performance of SIZakat, we
used the four parameters mentioned earlier. We
specify the criteria or limits of the four parameters
to determine performance of SIZakat. If the value
of the four parameters included in the criteria then
SIZakat have a good performance. Below we will
explain the criteria of each parameter:

Complete request
Complete request is the number of successful re-
quests or responses received. The number of com-
plete requests must be in accordance with the num-
ber of users tested.

Failed request
Failed request is the number of which is considered
failed to be received by a user. If the the value of
failed requests is greater than zero, there will be
printed on the other line showing number of re-
quests that failed because of the connection, read-
ability, wrong data size, or exceptions. For testing
on SIZakat, we determine that the value of failed
requests should be no more than zero (0).

Haris, et al. Analysis of Quality Assurance 87

TABLE 5
STRESS TESTING RESULTS OF 500 USERS

Concu
rrence
Level

Notation

Hasil Pengujian
Compl

ete
Reque

sts

Failed
Reque

sts

Requ
est
per

Secon
d

[#sec]
(mean

)

Transfer
Rate

[Kbytes/s
ec]

received

100 Ab –n
500 –c
100

500 0 58.99 309.31

200 Ab –n
500 –c
200

500 55 39.84 192.83

300 Ab –n
500 –c
300

500 139 55.99 236.63

400 Ab –n
500 –c
400

500 110 53.52 236.66

500 Ab –n
500 –c
500

500 89 53.40 245.20

Requests per second
Requests per second are the number of requests
that is able to be served in one second. The greater
the value of requests per second the better. This
parameter displays the value of the average number
of requests that can be served in one second. For
testing on SIZakat, we determine that on average
more than 10 requests/second is a good result.

Transfer rate
Transfer rate is a parameter that indicates the capa-
city of data that can be displayed. The greater the
value of this parameter, the better performance SI-
Zakat has. A good value for this parameter is more
than 10 Kbyte.
 In this test, we tested SIZakat which is already
installed on the Fasilkomserver. The results of the
test which performed directly on the Fasilkom ser-
ver generates output that is more accurate and sho-
ws the true state. We will explain the analysis of
test results based on the number of users increasing
over time.
 In the first stress test, we used500 users with
100 concurrent users increased on each subtest,
while in the second stress testingwe used 1000
users with 100 concurrent users increased on each
subtest, but only limit it to 500. From Table 5 and
6, we conclude:1) The number of complete requ-
ests is equal to the number of users, 2) The num-
ber of failed requests for concurrence level of 200-
500 is greater than zero. Only at concurrence level
of 100 is zero, 3) The number of requess per second
for all concurrence levels is more than 10 requests
per second, and 4) The number of transfer rate for
all concurrence levelsis more than 10 Kbytes/sec.

TABLE 6
STRESS TESTING RESULTS OF 1000 USERS

Concu
rrence
Level

Notation

Hasil Pengujian
Compl

ete
Reque

sts

Failed
Reque

sts

Requ
est
per

Secon
d

[#sec]
(mean

)

Transfer
Rate

[Kbytes/s
ec]

received

100 Ab –n
500 –c
100

1000 0 58.18 305.05

200 Ab –n
500 –c
200

1000 165 61.43 285.83

300 Ab –n
500 –c
300

1000 260 57.22 236.63

400 Ab –n
500 –c
400

1000 221 52.18 236.66

500 Ab –n
500 –c
500

1000 89 53.40 245.20

Load Testing

There are two (2) variables and three (3) parame-
ters used to perform this test. The first variable is
the number of users who accessed SIZakat and se-
cond is the ramp period allocated for testing. For
example, the number of users is 100 and the ramp
period (in sec) is 2 so 100 users who make requests
are served within 2 seconds or equal to 50 requests
per second. The test results are presented in tabular
form which can be found in Table 7. Furthermore,
from the results of the testwe process the data to get
the parameters: min, max, and mean response times
from Global Information, the overall statistic requ-
est. According to Mizouni, Serhani, Dssouli, Ben-
harref, and Taleb [15] response time is the time
required between issuing a request and getting the
response. Those three parameters of time determi-
ne performance of SIZakat. The time unit for each
response time is millisecond.
 To determine performance of SIZakat, we on-
ly consider the Time Average which is the average
time spent to serve concurrent requests. A good res-
ponse time is 10 seconds [8].The testing results of
entire menus of SIZakatcan be seen in Table 7 usi-
ng 100 users and 5 seconds of ramp period or equal
to 20 requests per second.

SQL Injection Testing

SQL injection testing was carried outon SIZakat
that located on a Fasilkom server with address at
http://ws-73.rsa.cs.ui.ac.id/sizakat. There are two
ways to execute SQL Injection.They are to try
some unnatural characters forcibly (brute force)
and using dorks [16].

88 Journal of Information Systems, Volume 9, Issue 2, October 2013

TABLE 7
LOAD TESTING RESULTS

Menu Functional
Time

Average
(ms)

Time Interval
(ms)

Min Max
User User Data

Management
1273 50 2980

 Viewing User
Details

954 40 5560

 Adding User
Data

179 40 1080

 Changing User
Data

311 70 3680

Muzakki Muzakki Data
Management

810 50 1770

 Viewing Muzakki
Details

1703 50 4660

 Adding Muzakki
Data

121 50 310

 Changing
Muzakki Data

266 90 690

Zakat
Quality

Zakat Quality
Management

160 40 510

 Viewing Zakat
Quality Details

105 50 360

 Adding Zakat
Quality Data

130 40 250

 Changing Zakat
Quality Data

318 70 1370

Report Creating Batch
Report

219 80 710

Prediction Viewing Zakat
Prediction Report

822 50 2290

 Viewing Muzakki
Prediction Report

507 40 1150

Transaction Zakat
Transaction Data
Management

881 50 1600

 Viewing
Transaction
Details

1183 60 8230

 Changing Zakat
Transaction

1137 220 5480

 Adding Zakat
Transactions

1410 90 4880

 Muzakki
Transaction Data
Management

406 80 790

 Viewing
Transaction
History

288 60 710

Period Period
Management

131 40 550

 Adding Period 369 40 2360
 Changing Period 179 90 350
 Activating Period 192 70 410
 Deactivating

Period
191 60 480

General Login 244 40 750
 Logout 288 30 820

 We used the second injection technique which
means by using a dork. This technique is usually
used when a website has a dork that can be tried to
find errors in the database. SIZakat is different
from other web applicationsin institution or organi-
zation websites as they are more informative. Usu-
ally on institution or organization websites, many
dorks can be found that can be used to perform
SQL Injection. SIZakat is an application where its

role has been determined. Unauthorized users can
only access SIZakat up to the loginpage. Only users
who have been registeredthat can find SIZakat’s
dorks. Although dorks in SIZakat have been found,
the dorks are not necessarily can be used to perform
SQL Injection. Example of dorks in SIZakat:
/manage_user/view_user/STF201208081
/transaction/detail_transaction/TRANSC2013012
340
 From the dorks above, these can be tried to
find errors in SIZakat database. The test is perform-
ed by adding a single quote “'” after id and minus
“-“ before the id in the URL address. Wedidn’t get
an error when adding those two signs in SIZakat.
In other words, SIZakat security can not be pene-
trated via SQL Injection with this simple step. If
there is an error message such as "You have an er-
ror in your SQL syntax; check the manual that cor-
responds to your MySQL server version for the
right syntax to use near ''1'' at line 1", then the pro-
cess of SQL Injectiontesting can be continued.

To support SQL Injection testing we used sql-
map toolwith version 1.0-dev. Thistool scans all
vulnerabilities that can be used for SQL Injection
in SIZakat.
 The next test was done by using the dork add-
resses in SIZakat automatically. We executed a qu-
ery in Figure 2 and got the result shown in Figure
3.

sqlmap -u http://ws-
73.rsa.cs.ui.ac.id/sizakat/index.php/manage
_user/view_user/STF201208081

Figure 2. Sqlmap Query

[10:37:30] [INFO] testing connection to the
target URL
[10:37:30] [INFO] testing if the target URL

is stable. This can take a couple of
seconds
[10:37:31] [INFO] target URL is stable

[10:37:31] [CRITICAL] no parameter(s) found
for testing in the provided data (e.g. GET
parameter 'id' in

'www.site.com/index.php?id=1')

Figure 3. Sqlmap Result

sqlmap -u http://ws-
73.rsa.cs.ui.ac.id/sizakat/index.php/manage

_user/view_user/STF201208081*

Figure 4. Sqlmap Query

Haris, et al. Analysis of Quality Assurance 89

[10:46:32] [INFO] testing connection to the
target URL

[10:46:32] [INFO] testing if the target URL
is stable. This can take a couple of
seconds

[10:46:33] [INFO] target URL is stable
[10:46:33] [INFO] testing if URI parameter
'#1*' is dynamic
[10:46:33] [WARNING] URI parameter '#1*'

does not appear dynamic
[10:46:33] [WARNING] heuristic (basic) test
shows that URI parameter '#1*' might not be

injectable
[10:46:33] [INFO] testing for SQL injection
on URI parameter '#1*'

[10:46:44] [WARNING] using unescaped
version of the test because of zero
knowledge of the back-end DBMS. You can try

to explicitly set it using option '--dbms'
[10:46:48] [WARNING] URI parameter '#1*' is
not injectable

[10:46:48] [CRITICAL] all tested parameters
appear to be not injectable. Try toincrease
'--level'/'--risk' values to perform more

tests. Also, you can try to rerun by
providing either a valid value for option

'--string' (or '--regexp')

Figure 5. Sqlmap Result

[10:46:32] [INFO] testing connection to the
target URL
[10:46:32] [INFO] testing if the target URL

is stable. This can take a couple of
seconds
[10:46:33] [INFO] target URL is stable

[10:46:33] [INFO] testing if URI parameter
'#1*' is dynamic
[10:46:33] [WARNING] URI parameter '#1*'
does not appear dynamic

[10:46:33] [WARNING] heuristic (basic) test
shows that URI parameter '#1*' might not be
injectable

[10:46:33] [INFO] testing for SQL injection
on URI parameter '#1*'
[10:46:44] [WARNING] using unescaped

version of the test because of zero
knowledge of the back-end DBMS. You can try
to explicitly set it using option '--dbms'

[10:46:48] [WARNING] URI parameter '#1*' is
not injectable
[10:46:48] [CRITICAL] all tested parameters

appear to be not injectable. Try toincrease
'--level'/'--risk' values to perform more
tests. Also, you can try to rerun by

providing either a valid value for option
'--string' (or '--regexp')

Figure 6. Sqlmap Result

sqlmap –u "http://ws-

73.rsa.cs.ui.ac.id/sizakat/index.php/manage

_user/view_user/STF20120881*" –-dump

Figure 7. Sqlmap Query.

[17:07:29] [INFO] testing connection to the
target URL

[17:07:29] [INFO] testing if the target URL
is stable. This can take a couple of
seconds

[17:07:37] [INFO] target URL is stable
[17:07:37] [INFO] testing if URI parameter
'#1*' is dynamic

[17:07:38] [INFO] confirming that URI
parameter '#1*' is dynamic
[17:07:38] [INFO] URI parameter '#1*' is

dynamic

[17:07:38] [WARNING] heuristic (basic) test
shows that URI parameter '#1*' might not be

injectable
[17:07:38] [INFO] testing for SQL injection
on URI parameter '#1*'

[17:07:46] [WARNING] using unescaped
version of the test because of zero
knowledge of the back-end DBMS. You can try
to explicitly set it using option '--dbms'

[17:07:49] [WARNING] URI parameter '#1*' is
not injectable
[17:07:49] [CRITICAL] all tested parameters

appear to be not injectable. Try to
increase '--level'/'--risk' values to
perform more tests. Also, you can try to

rerun by providing either a valid value for
option '--string' (or '--regexp')

Figure 8. Sqlmap Result

 From the scanning result above, sqlmap can
not perform the test because it only supports query-
string-based URL. For that we need a special com-
mand to test more focused on ID. We executed a
query in Figure 4 and got the result in Figure 5.
 Then the second test on dork address at
“/transaction/detail_transaction/TRANSC2013012
340” got the report as seen in Figure 6.
 For the final test we tried to retrieve tables,
users, and passwords that exist in the database. We
executed a query shown in Figure 7 and got the
result seen in Figure 8.From both completed tests,
we conclude that sqlmap can not penetrate the data-
base security in SIZakat.

XSS Injection Testing

The last security testing is XSS Injection testing.
The XSS Injection testing was carried outon SIZa-
kat that located on a Fasilkom server with address
at http://ws-73.rsa.cs.ui.ac.id/sizakat.
 To support XSS Injection technique we used
XSS Me with version 0.4.6. This tool performs
brute-force attacks against the forms on SIZakat
webpage so it can find a vulnerability that can be
used for XSS Injection. The testwas carried out by
using the period changing menu in SIZakat. In
Table 8. we can see the results of test on webpage
with “Test all forms with top attacks”.

90 Journal of Information Systems, Volume 9, Issue 2, October 2013

TABLE 8
XSS INJECTION TESTING RESULTS

Tested Value Result
<SCRIPT
document.vulnerable=true;</SCRIPT>

The
unencode
d attack
string
was not
found in
the html
of the
document
.
DOM
was not
modified
by attack
string.
Field
does not
appear
vulnerabl
e to XSS
String

<<SCRIPT>document.vulnerable=true;//<</

SCRIPT>
<BODY onload!#$%&()*~+-
_.,:;?@[/|\]^`=document.vulnerable=true;>
<IMG
SRC="javascript:document.vulnerable=true;

">
<IMG SRC="
javascript:document.vulnerable=true;">
<IMG SRC="jav
ascript:document.vulnerable=true;">
<SCRIPT>document.vulnerable=true;</SCR
IPT>
<META HTTP-EQUIV="Set-Cookie"
Content="USERID=<SCRIPT>document.vu
lnerable=true</SCRIPT>">
<meta http-equiv="refresh"
content="0;url=javascript:document.vulnera

ble=true;">

 After conducted 18 types of XSS attacks usi-
ng XSS Me, the injected script code can not be fou-
nd in SIZakat webpages that have been tested.The
message “The unencoded attack string was not fou-
nd in the html of the document“ which states that
the attack code was not found on webpage indica-
tes that SIZakat can not be injected.

User Acceptance Testing

User Acceptance Testing (UAT) is a test conducted
by SIZakat userrepresentatives to check that if the
system has been developed to meet their needs.
This test is a part of Factory Acceptance Testing
(FAT) where the system is tested by the user before
it moved to the user’s location.
 In this test, we will utilize a UAT document
which handedto SIZakat’s users. This document
contains a list of scenarios to be tested by the user,
along with instructions on how to complete the sce-
narios and desired outcome of the scenarios. The
scenariosused in this test are use-caseswhich are
from client’s requirements.
 This test was done by user doing all use-case
that is available as instructed. When a use-case has
been completed and the system appropriately dis-
plays what has been said in the UAT document, that
use-case passes the test, and then user creates a
checkmark in the result column of the use-case.
This test was done by 2 users and the result is all
use-case got a checkmark (Table 9) which indicates
that all SIZakat use-cases are consistent with the
specifications.

4. Conclusions

This study has resulted in a test results document
that can be used to consider whether or not SIZakat

is fit for use. The following conclusions were ob-
tained by doing allperformed tests.

TABLE 9
USER ACCEPTANCE TESTING RESULTS

No. Use-case Result
1 User Data Management �
 Viewing User Details �
 Adding User Data �
 Changing User Data �
 Deleting User Data �
2 Muzakki Data Management �
 Viewing Muzakki Details �
 Adding Muzakki Data �
 Changing Muzakki Data �
 Deleting Muzakki Data �
3 Mustahik Data Management �
 Viewing Mustahik Details �
 Adding Mustahik Data �
 Changing Mustahik Data �
 Deleting Mustahik Data �
4 Zakat Quality Management �
 Viewing Zakat Quality Details �
 Adding Zakat Quality Data �
 Changing Zakat Quality Data �
 Deleting Zakat Quality Data �
5 Creating Customized Report �
 Creating Batch Report �
6 Viewing Zakat Prediction Report �
 Viewing Muzakki Prediction Report �
7 Zakat Transaction Data Management �
 Viewing Transaction Details �
 Changing Zakat Transaction �
 Removing Zakat Transaction �
 Adding Zakat Transactions �
 Muzakki Transaction Data Management �
 Viewing Transaction History �
8 Period Management �
 Adding Period �
 Changing Period �
9 Login �
 Logout �

The results of unit testing showed satisfactory

results because each class and method in SIZakat
meets the criterias.It can be seen from all test cases
that have passed the test for having produced the
correct and consistent with those expected.

The integration test results showed that all
functionals have been running well according to
their functions. The reports from Selenium IDE in-
dicate that every step in all scenarios have been run
well when doing playback and found no errors on
the interfaces.

The stress testing results indicate that the per-
formance is good enough when SIZakat faced ab-
normal load. When tested using 500 and 1000 requ-
ests, SIZakat is able to serve concurrency level of
100 without fail. Judging from SIZakat location
usage, this request amount is sufficient for daily
needs.

The load testing results indicate that the per-
formance is good enough for SIZakat when facing
various kinds of activity from user when accessed
simultaneously. The report from Gatling tool indi-
cates that the average response time spent by the

Haris, et al. Analysis of Quality Assurance 91

user for each activity is no more than the time spe-
cified, which is 10 seconds.

SIZakat can not be injected using SQL Injec-
tion technique either manually or with the help of
sqlmap tool. Testing by using sqlmap indicates SI-
Zakat can not be injected because it didn’t show
important information about the database. SIZakat
uses CodeIgniter framework that separates bet-
ween the model, view, controller (MVC). In gene-
ral, applications that use MVC model are safe from
SQL Injection techniques.

SIZakat can not be injected using XSS Injec-
tion techniques either manually or with the help of
XSS-Me tool. Either testing manually or using the
XSS Me tool indicates that SIZakat can not be in-
jected because it has the ability to validate user
input.

The conclusion of all testing results is SIZa-
kat already can be used to manage zakat. The con-
clusion from all testing results are SIZakat already
can be used to manage zakat. However,it needs to
do bit of repair and modification.

References

[1] Hambling, B., Morgan, P., & Samaroo, A.

(2010). Software Testing: An ISTQB-ISEB Fo-
undation Guide (2nd ed.). Swindon: British
Computer Society.

[2] Laudon, K. C., & Laudon, J. C. (2011). Mana-
gement Information Systems (12th ed.). New
Jersey: Prentice Hall.

[3] Shrivastava, D. P., & Jain, R. C. (2011). Unit
test case design metrics in test driven deve-
lopment. International Conference on Com-
munications, Computing and Control Appli-
cations (CCCA), 1-6.

[4] Seixas, N., Fonseca, J., Vieira, M., & Madeira,
H. (2009). Looking at Web Security Vulnera-
bilities from the Programming Language Pers-
pective: A Field Study. International Sympo-
sium on Software Reliability Engineering (ISS-
RE), 129-135.

[5] Craig, R. D., & Jaskiel, S. P. (2002). Systema-
tic Software Testing. Massachusetts: Artech
House Publishers.

[6] Selenium. (2006-2013). Selenium IDE Plug-
ins. Retrieved May 28, 2013, from
http://docs.seleniumhq.org/projects/ide/.

[7] Kunhua Zhu, Junhui Fu, & Yancui Li. (2010).
Research the performance testing and perfor-
mance improvement strategy in web applica-
tion. 2nd International Conference on Educa-
tion Technology and Computer (ICETC), 2,
328-332.

[8] Subraya, B. (2006). Integrated Approach to
Web Performance Testing: A Practitioner's
Guide. Pennsylvania: Idea Group Inc.

[9] Gatling Project. (2013). Stress Tool. Retrieved
May 20, 2013, from Gatling Project: http://
gatling-tool.org/.

[10] Atashzar, H., Torkaman, A., Bahrololum, M.,
& Tadayon, M. (2011). A Survey on Web Ap-
plication Vulnerabilities and Countermea-
sures. International Conference on Computer
Sciences and Convergence Information Tech-
nology (ICCIT), 647-652.

[11] You Yu, Yuanyuan Yang, Jian Gu, & Liang
Shen. (2011). Analysis and Suggestions for the
Security of Web. International Conference on
Computer Science and Network Technology
(ICCSNT), 1, 236-240. Retrieved June 1,
2013.

[12] Security Compass. (2013). XSS-Me. Retrieved
May 27, 2013, from Security Compass Labs:
http://labs.securitycompass.com/exploit-
me/xss-me/.

[13] EllisLab, Inc. (2013, May 21). Models.
Retrieved from CodeIgniter User Guide: http:
//ellislab.com/codeigniter/user-guide/general/
models.html.

[14] The Apache Software Foundation. (2013). ab
- Apache HTTP server benchmarking tool. Re-
trieved April 29, 2013, from Apache HTTP
Server: http://httpd.apache.org/docs/2.2/
programs/ab.html.

[15] Mizouni, R., Serhani, M. A., Dssouli, R., Ben-
harref, A., & Taleb, I. (2011). Performance
Evaluation of Mobile Web Services. IEEE Eu-
ropean Conference on Web Services (ECO-
WS), 9, 184-191.

[16] Setiadi, A. (2011). Penjaminan Mutu Sistem
Informasi Bantuan Operasioal Sekolah mela-
lui Pengujian Performansi Keamanan dan
Keakuratan. Universitas Indonesia. Depok:
Fasilkom UI.

